Skip header and navigation
CMA PolicyBase

Policies that advocate for the medical profession and Canadians


34 records – page 1 of 2.

Last Reviewed
2020-02-29
Date
2008-08-20
Topics
Health systems, system funding and performance
Physician practice/ compensation/ forms
Health information and e-health
Resolution
GC08-95
The Canadian Medical Association, in consultation with provincial/territorial medical associations, the College of Family Physicians of Canada and the Royal College of Physicians and Surgeons of Canada, will work with professional regulatory/licensing bodies to establish a harmonized policy environment that would support physicians who are providing telehealth care in multiple jurisdictions.
Policy Type
Policy resolution
Last Reviewed
2020-02-29
Date
2008-08-20
Topics
Health systems, system funding and performance
Physician practice/ compensation/ forms
Health information and e-health
Resolution
GC08-95
The Canadian Medical Association, in consultation with provincial/territorial medical associations, the College of Family Physicians of Canada and the Royal College of Physicians and Surgeons of Canada, will work with professional regulatory/licensing bodies to establish a harmonized policy environment that would support physicians who are providing telehealth care in multiple jurisdictions.
Text
The Canadian Medical Association, in consultation with provincial/territorial medical associations, the College of Family Physicians of Canada and the Royal College of Physicians and Surgeons of Canada, will work with professional regulatory/licensing bodies to establish a harmonized policy environment that would support physicians who are providing telehealth care in multiple jurisdictions.
Less detail

Interoperability and connectivity of e-health systems

https://policybase.cma.ca/en/permalink/policy10910
Last Reviewed
2020-02-29
Date
2013-08-21
Topics
Health systems, system funding and performance
Health information and e-health
Resolution
GC13-88
The Canadian Medical Association strongly advocates for continued governmental investment to support interoperability and connectivity of e-health systems.
Policy Type
Policy resolution
Last Reviewed
2020-02-29
Date
2013-08-21
Topics
Health systems, system funding and performance
Health information and e-health
Resolution
GC13-88
The Canadian Medical Association strongly advocates for continued governmental investment to support interoperability and connectivity of e-health systems.
Text
The Canadian Medical Association strongly advocates for continued governmental investment to support interoperability and connectivity of e-health systems.
Less detail

Patient-controlled electronic health record

https://policybase.cma.ca/en/permalink/policy10912
Last Reviewed
2020-02-29
Date
2013-08-21
Topics
Health information and e-health
Resolution
GC13-89
The Canadian Medical Association supports the exploration of a complementary patient-controlled electronic health record.
Policy Type
Policy resolution
Last Reviewed
2020-02-29
Date
2013-08-21
Topics
Health information and e-health
Resolution
GC13-89
The Canadian Medical Association supports the exploration of a complementary patient-controlled electronic health record.
Text
The Canadian Medical Association supports the exploration of a complementary patient-controlled electronic health record.
Less detail

Guiding principles for the optimal use of data analytics by physicians at the point of care

https://policybase.cma.ca/en/permalink/policy11812
Last Reviewed
2020-02-29
Date
2016-02-27
Topics
Health information and e-health
information [CMA policy]. CMAJ 2002 167(4):393-4. Available: http://policybase.cma.ca/dbtw-wpd/PolicyPDF/PD02-09
  1 document  
Policy Type
Policy document
Last Reviewed
2020-02-29
Date
2016-02-27
Topics
Health information and e-health
Text
Electronic tools are now being used more widely in medicine than ever before. A majority of physicians in Canada have adopted electronic medical records (EMRs)-75% of physicians use EMRs to enter or retrieve clinical patient notes, and 80% use electronic tools to access laboratory/diagnostic test results. The increased use of point-of-care tools and information repositories has resulted in the mass digitization and storage of clinical information, which provides opportunities for the use of big data analytics. Big data analytics may come to be understood as the process of examining clinical data in EMRs cross-referenced with other administrative, demographic and behavioural data sources to reveal determinants of patient health and patterns in clinical practice. Its increased use may provide opportunities to develop and enhance clinical practice tools and to improve health outcomes at both point-of-care and population levels. However, given the nature of EMR use in Canada, these opportunities may be restricted to primary care practice at this time. Physicians play a central role in finding the right balance between leveraging the advantages of big data analytics and protecting patient privacy. Guiding Principles for the Optimal Use of Data Analytics by Physicians at the Point of Care outlines basic considerations for the use of big data analytics services and highlights key considerations when responding to requests for access to EMR data, including the following: * Why will data analytics be used? Will the safety and effectiveness of patient care be enhanced? Will the results be used to inform public health measures? * What are the responsibilities of physicians to respect and protect patient and physician information, provide appropriate information during consent conversations, and review data sharing agreements and consult with EMR vendors to understand how data will be used? As physicians will encounter big data analytics in a number of ways, this document also outlines the characteristics one should be looking for when assessing the safety and effectiveness of big data analytics services: * protection of privacy * clear and detailed data sharing agreement * physician-owned and -led data collaboratives * endorsement by a professional or recognized association, medical society or health care organization * scope of services and functionality/appropriateness of data While this guidance is not a standalone document-it should be used as a supplemental reference to provincial privacy legislation-it is hoped that it can aid physicians to identify suitable big data analytics services and derive benefits from them. Introduction This document outlines basic considerations for the use of big data analytics services at the point of care or for research approved by a research ethics board. This includes considerations when responding to requests for access to data in electronic medical records (EMRs). These guiding principles build on the policies of the Canadian Medical Association (CMA) on Data Sharing Agreements: Principles for Electronic Medical Records/Electronic Health Records,1 Principles Concerning Physician Information2 and Principles for the Protection of Patients' Personal Health Information,3 the 2011 clinical vignettes Disclosing Personal Health Information to Third Parties4 and Need to Know and Circle of Care,5 and the Canadian Medical Protective Association's The Impact of Big Data on Healthcare and Medical Practice.6 These guiding principles are for information and reference only and should not be construed as legal or financial advice, nor is this document a substitute for legal or other professional advice. Physicians must always comply with all legislation that applies to big data analytics, including privacy legislation. Big data analytics in the clinical context involves the collection, use and potential disclosure of patient and physician information, both of which could be considered sensitive personal information under privacy legislation. Big data analytics has the potential to improve health outcomes, both at the point of care and at a population level. Doctors have a key role to play in finding the right balance between leveraging the advantages of big data (enhanced care, service delivery and resource management) and protecting patient privacy.7 Background A majority of physicians in Canada have adopted EMRs in their practice. The percentage of physicians using EMRs to enter or retrieve clinical patient notes increased from 26% in 2007 to 75% in 2014. Eighty percent of physicians used electronic tools to access laboratory/diagnostic test results in 2014, up from 38% in 2010.8 The increasingly broad collection of information by physicians at the point of care, combined with the growth of information repositories developed by various governmental and intergovernmental bodies, has resulted in the mass digitization and storage of clinical information. Big data is the term for data sets so large and complex that it is difficult to process them using traditional relational database management systems, desktop statistics and visualization software. What is considered "big" depends on the infrastructure and capabilities of the organization managing the data.9 Analytics is the discovery and communication of meaningful patterns in data. Analytics relies on the simultaneous application of statistics, computer programming and operations research. Analytics often favours data visualization to communicate insight, and insights from data are used to guide decision-making.10 For physicians, big data analytics may come to be understood as the process of examining the clinical data in EMRs cross-referenced with other administrative, demographic and behavioural data sources to reveal determinants of patient health and patterns in clinical practice. This information can be used to assist clinical decision-making or for research approved by a research ethics board. There are four types of big data analytics physicians may encounter in the provision of patient care. They are generally performed in the following sequence, in a continuous cycle11,12,13,14: 1. Population health analytics: Health trends are identified in the aggregate within a community, a region or a national population. The data can be derived from biomedical and/or administrative data. 2. Risk-based cost analysis: Populations are segmented into groups according to the level of risk to the patient's health and/or cost to the health system. 3. Care management: Clinicians are enabled to manage patient care according to defined care pathways and clinical protocols informed by population health analytics and risk-based cost analysis. Care management includes the following: o Clinical decision support: Outcomes are predicted and/or alternative treatments are recommended to clinicians and patients at the point of care. o Personalized/precision care: Personalized data sets, such as genomic DNA sequences for at-risk patients, are leveraged to highlight best practice treatments for patients and practitioners. These solutions may offer early detection and diagnosis before a patient develops disease symptoms. o Clinical operations: Workflow management is performed, such as wait-times management, mining historical and unstructured data for patterns to predict events that may affect care. o Continuing education and professional development: Longitudinal performance data are combined across institutions, classes, cohorts or programs with correlating patient outcomes to assess models of education and/or develop new programs. 4. Performance analytics: Metrics for quality and efficiency of patient care are cross-referenced with clinical decision-making and performance data to assess clinical performance. This cycle is also sometimes understood as a component of "meaningful" or "enhanced" use of EMRs. How might physicians encounter big data analytics? Many EMRs run analytics both visibly (e.g., as a function that can be activated at appropriate junctures in the care pathway) and invisibly (e.g., as tools that run seamlessly in the background of an EMR). Physicians may or may not be aware when data are being collected, analyzed, tailored or presented by big data analytics services. However, many jurisdictions are strengthening their laws and standards, and best practices are gradually emerging.15 Physicians may have entered into a data sharing agreement with their EMR vendor when they procured an EMR for their practice. Such agreements may include provisions to share de-identified (i.e., anonymized) and/or aggregate data with the EMR vendor for specified or unspecified purposes. Physicians may also receive requests from third parties to share their EMR data. These requests may come from various sources: * provincial governments * intergovernmental agencies * national and provincial associations, including medical associations * non-profit organizations * independent researchers * EMR vendors, service providers and other private corporations National Physician Survey results indicate that in 2014, 10% of physicians had shared data from their EMRs for the purposes of research, 10% for chronic disease surveillance and 8% for care improvement. Family physicians were more likely than other specialists to share with public health agencies (22% v. 11%) and electronic record vendors (13% v. 2%). Specialists were more likely than family physicians to share with researchers (59% v. 37%), hospital departments (47% v. 20%) and university departments (28% v. 15%). There is significant variability across the provinces with regard to what proportion of physicians are sharing information from their EMRs, which is affected by the presence of research initiatives, research objectives defined by the approval of a research ethics board, the adoption rates of EMRs among physicians in the province and the functionality of those EMRs.16 For example, there are family practitioners across Canada who provide data to the Canadian Primary Care Sentinel Surveillance Network (CPCSSN). The CPCSSN is a multi-disease EMR surveillance and research system that allows family physicians, epidemiologists and researchers to understand and manage chronic care conditions for patients. Health information is collected from EMRs in the offices of participating family physicians, specifically information about Canadians suffering from chronic and mental health conditions and three neurologic conditions, including Alzheimer's and related dementias.17 In another example, the Canadian Partnership Against Cancer's Surgical Synoptic Reporting Initiative captures standardized information about surgery at the point of care and transmits the surgical report to other health care personnel. Surgeons can use the captured information, which gives them the ability to assess adherence to the clinical evidence and safety procedures embedded in the reporting templates, to track their own practices and those of their community.18 The concept of synoptic reporting-whereby a physician provides anonymized data about their practice in return for an aggregate report summarizing the practice of others -can be expanded to any area in which an appropriate number of physicians are willing to participate. Guiding principles for the use of big data analytics These guiding principles are designed to give physicians a starting point as they consider the use of big data analytics in their practices: * The objective of using big data analytics must be to enhance the safety and/or effectiveness of patient care or for the purpose of health promotion. * Should a physician use big data analytics, it is the responsibility of the physician to do so in a way that adheres to their legislative, regulatory and/or professional obligations. * Physicians are responsible for the privacy of their individual patients. Physicians may wish to refer to the CMA's policy on Principles for the Protection of Patients' Personal Health Information.19 * Physicians are responsible for respecting and protecting the privacy of other physicians' information. Physicians may wish to refer to the CMA's policy on Principles Concerning Physician Information.20 * When physicians enter into and document a broad consent discussion with their patient, which can include the electronic management of health information, this agreement should convey information to cover the elements common to big data analytics services. * Physicians may also wish to consider the potential for big data analytics to inform public health measures and enhance health system efficiency and take this into account when responding to requests for access to data in an EMR. * Many EMR vendors provide cloud-based storage to their clients, so information entered into an EMR may be available to the EMR vendor in a de-identified and/or aggregate state. Physicians should carefully read their data sharing agreement with their EMR vendor to understand how and why the data that is entered into an EMR is used, and/or they should refer to the CMA's policy on the matter, Data Sharing Agreements: Principles for Electronic Medical Records/Electronic Health Records.21 * Given the dynamic nature of this emerging tool, physicians are encouraged to share information about their experiences with big data analytics and its applications with colleagues. Characteristics of safe and effective big data analytics services 1. Protection of privacy Privacy and security concerns present a challenge in linking big data in EMRs. As data are linked, it becomes increasingly difficult to de-identify individual patients.22 As care is increasingly provided in interconnected, digital environments, physicians are having to take on the role of data stewardship. To that end, physicians may wish to employ conservative risk assessment practices-"should we" as opposed to "can we" when linking data sources-and obtain express patient consent, employing a "permission-based" approach to the collection and stewardship of data. 2. A clear and detailed data sharing agreement Physicians entering into a contract with an EMR vendor or other third party for provision of services should understand how and when they are contributing to the collection of data for the purposes of big data analytics services. There are template data sharing agreements available, which include the basic components of safe and effective data sharing, such as the model provided by the Information and Privacy Commissioner of Ontario.23 Data sharing agreements may include general use and project-specific use, both of which physicians should assess before entering into the agreement. When EMR access is being provided to a ministry of health and/or regional health authority, the data sharing agreement should distinguish between access to administrative data and access to clinical data. Physicians may wish to refer to the CMA's policy on Data Sharing Agreements: Principles for Electronic Medical Records/Electronic Health Records.24 3. Physician-owned and -led data collaboratives In some provinces there may exist opportunities to share clinical data in physician-owned and -led networks to reflect on and improve patient care. One example is the Physicians Data Collaborative in British Columbia, a not-for-profit organization open to divisions of family practice.25 Collaboratives such as this one are governed by physicians and driven by a desire to protect the privacy and safety of patients while producing meaningful results for physicians in daily practice. Participation in physician-owned data collaboratives may ensure that patient data continue to be managed by physicians, which may lead to an appropriate prioritization of physicians' obligations to balance patient-centred care and patient privacy. 4. Endorsement by a professional or other recognized association or medical society or health care organization When considering use of big data analytics services, it is best to select services created or endorsed by a professional or other recognized association or medical society. Some health care organizations, such as hospitals, may also develop or endorse services for use in their clinical environments. Without such endorsement, physicians are advised to proceed with additional caution. 5. Scope of services and functionality/appropriateness of data Physicians may wish to seek out information from EMR vendors and service providers about how big data analytics services complement the process of diagnosis and about the range of data sources from which these services draw. While big data analytics promises insight into population health and practice trends, if it is not drawing from an appropriate level of cross-referenced sources it may present a skewed picture of both.26 Ultimately, the physician must decide if the sources are appropriately diverse. Physicians should expect EMR vendors and service providers to make clear how and why they draw the information they do in the provision of analytics services. Ideally, analytics services should integrate population health analytics, risk-based cost analysis, care management services (such as point-of-care decision support tools) and performance analytics. Physicians should expect EMR vendors to allocate sufficient health informatics resources to information management, technical infrastructure, data protection and response to breaches in privacy, and data extraction and analysis.27,28 Physicians may also wish to consider the appropriateness of data analytics services in the context of their practices. Not all data will be useful for some medical specialties, such as those treating conditions that are relatively rare in the overall population. The potential for new or enhanced clinical practice tools informed by big data analytics may be restricted to primary care practice at this time.29 Finally, predictive analytics often make treatment recommendations that are designed to improve the health outcomes in a population, and these recommendations may conflict with physicians' ethical obligations to act in the best interests of individual patients and respect patients' autonomous decision-making).30 References 1 Canadian Medical Association. Data sharing agreements: principles for electronic medical records/electronic health records [CMA policy]. Ottawa: The Association; 2009. Available: http://policybase.cma.ca/dbtw-wpd/Policypdf/PD09-01.pdf 2 Canadian Medical Association. Principles concerning physician information [CMA policy]. CMAJ 2002 167(4):393-4. Available: http://policybase.cma.ca/dbtw-wpd/PolicyPDF/PD02-09.pdf 3 Canadian Medical Association. Principles for the protection of patients' personal health information [CMA policy]. Ottawa: The Association; 2010. Available: http://policybase.cma.ca/dbtw-wpd/Policypdf/PD11-03.pdf 4 Canadian Medical Association. Disclosing personal health information to third parties. Ottawa: The Association; 2011. Available: www.cma.ca/Assets/assets-library/document/en/advocacy/CMA_Disclosure_third_parties-e.pdf 5 Canadian Medical Association. Need to know and circle of care. Ottawa: The Association; 2011. Available: www.cma.ca/Assets/assets-library/document/en/advocacy/CMA_Need_to_know_circle_care-e.pdf 6 Canadian Medical Protective Association. The impact of big data on healthcare and medical practice. Ottawa: The Association; no date. Available: https://oplfrpd5.cmpa-acpm.ca/documents/10179/301372750/com_14_big_data_design-e.pdf 7 Kayyali B, Knott D, Van Kuiken S. The 'big data' revolution in US health care: accelerating value and innovation. New York: McKinsey & Company; 2013. p. 1. 8 College of Family Physicians of Canada, Canadian Medical Association, Royal College of Physicians and Surgeons of Canada. National physician survey, 2014. National results by FP/GP or other specialist, sex, age and all physicians. Q7. Ottawa: The Colleges and Association; 2014. Available: http://nationalphysiciansurvey.ca/wp-content/uploads/2014/08/2014-National-EN-Q7.pdf 9 Anonymous. Data, data everywhere. The Economist 2010 Feb 27. Available: www.economist.com/node/15557443 10 Anonymous. Data, data everywhere. The Economist 2010 Feb 27. Available: www.economist.com/node/15557443 11 Canada Health Infoway. Big data analytics in health. Toronto: Canada Health Infoway; 2013. Available: www.infoway-inforoute.ca/index.php/resources/technical-documents/emerging-technology/doc_download/1419-big-data-analytics-in-health-white-paper-full-report (accessed 2014 May 16). 12 Ellaway RH, Pusic MV, Galbraith RM, Cameron T. 2014 Developing the role of big data and analytics in health professional education. Med Teach 2014;36(3):216-222. 13 Marino DJ. Using business intelligence to reduce the cost of care. Healthc Financ Manage 2014;68(3):42-44, 46. 14 Porter ME, Lee TH. The strategy that will fix health care. Harv Bus Rev 2013;91(10):50-70. 15 Baggaley C. Data protection in a world of big data: Canadian Medical Protective Association information session [presentation]. 2014 Aug 20. Available: https://oplfrpd5.cmpa-acpm.ca/documents/10179/301372750/com_2014_carmen_baggaley-e.pdf 16 College of Family Physicians of Canada, Canadian Medical Association, Royal College of Physicians and Surgeons of Canada. National physician survey, 2014. National results by FP/GP or other specialist, sex, age and all physicians. Q10. Ottawa: The Colleges and Association; 2014. Available: http://nationalphysiciansurvey.ca/wp-content/uploads/2014/08/2014-National-EN-Q10.pdf 17 Canadian Primary Care Sentinel Surveillance Network. Available: http://cpcssn.ca/ (accessed 2014 Nov 15). 18 Canadian Partnership Against Cancer. Sustaining action toward a shared vision: 2012-2017 strategic plan. Toronto: The Partnership; no date. Available: www.partnershipagainstcancer.ca/wp-content/uploads/sites/5/2015/03/Sustaining-Action-Toward-a-Shared-Vision_accessible.pdf 19 Canadian Medical Association. Principles for the protection of patients' personal health information [CMA policy]. Ottawa: The Association; 2011. Available: http://policybase.cma.ca/dbtw-wpd/Policypdf/PD11-03.pdf 20 Canadian Medical Association. Principles for the protection of patients' personal health information [CMA policy]. Ottawa: The Association; 2011. Available: http://policybase.cma.ca/dbtw-wpd/Policypdf/PD11-03.pdf 21 Canadian Medical Association. Data sharing agreements: principles for electronic medical records/electronic health records [CMA policy]. Ottawa: The Association; 2009. Available: http://policybase.cma.ca/dbtw-wpd/Policypdf/PD09-01.pdf 22 Weber G, Mandl KD, Kohane IS. Finding the missing link for big biomedical data . JAMA 2014;311(24):2479-2480. doi:10.1001/jama.2014.4228. 23 Information and Privacy Commissioner of Ontario. Model data sharing agreement. Toronto: The Commissioner; 1995. Available: www.ipc.on.ca/images/Resources/model-data-ag.pdf 24 Canadian Medical Association. Data sharing agreements: principles for electronic medical records/electronic health records [CMA policy]. Ottawa: The Association; 2009. Available: http://policybase.cma.ca/dbtw-wpd/Policypdf/PD09-01.pdf 25 Physicians Data Collaborative. Overview. Available: www.divisionsbc.ca/datacollaborative/home 26 Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff 2014;33(7):1139-1147. 27 Rhoads J, Ferrara L. Transforming healthcare through better use of data. Electron Healthc 2012;11(1):e27. 28 Canadian Medical Protective Association. The impact of big data and healthcare and medical practice. Ottawa: The Association; no date. Available: https://oplfrpd5.cmpa-acpm.ca/documents/10179/301372750/com_14_big_data_design-e.pdf 29 Genta RM, Sonnenberg A. Big data in gastroenterology research. Nat Rev Gastroenterol Hepatol 2014;11(6):386-390. 30 Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff 2014;33(7):1139-1147.
Documents
Less detail

Principles concerning physician information

https://policybase.cma.ca/en/permalink/policy208
Last Reviewed
2019-03-03
Date
2002-06-02
Topics
Health information and e-health
Ethics and medical professionalism
  1 document  
Policy Type
Policy document
Last Reviewed
2019-03-03
Date
2002-06-02
Topics
Health information and e-health
Ethics and medical professionalism
Text
Principles concerning physician information (CMA policy – approved June 2002) In an environment in which the capacity to capture, link and transmit information is growing and the need for fuller accountability is being created, the demand for physician information, and the number of people and organizations seeking to collect it, is increasing. Physician information, that is, information that includes personal health information about and information that relates or may relate to the professional activity of an identifiable physician or group of physicians, is valuable for a variety of purposes. The legitimacy and importance of these purposes varies a great deal, and therefore the rationale and rules related to the collection, use, access and disclosure of physician information also varies. The Canadian Medical Association (CMA) developed this policy to provide guiding principles to those who collect, use, have access to or disclose physician information. Such people are termed “custodians,” and they should be held publicly accountable. These principles complement and act in concert with the CMA Health Information Privacy Code (1), which holds patient health information sacrosanct. Physicians have legitimate interests in what information about them is collected, on what authority, by whom and for what purposes it is collected, and what safeguards and controls are in place. These interests include privacy and the right to exercise some control over the information; protection from the possibility that information will cause unwarranted harm, either at the individual or the group level; and assurance that interpretation of the information is accurate and unbiased. These legitimate interests extend to information about physicians that has been rendered in non-identifiable or aggregate format (e.g., to protect against the possibility of individual physicians being identified or of physician groups being unjustly stigmatized). Information in these formats, however, may be less sensitive than information from which an individual physician can be readily identified and, therefore, may warrant less protection. The purposes for the use of physician information may be more or less compelling. One compelling use is related to the fact that physicians, as members of a self-regulating profession, are professionally accountable to their patients, their profession and society. Physicians support this professional accountability purpose through the legislated mandate of their regulatory colleges. Physicians also recognize the importance of peer review in the context of professional development and maintenance of competence. The CMA supports the collection, use, access and disclosure of physician information subject to the conditions outlined below. Purpose(s): The purpose(s) for the collection of physician information, and any other purpose(s) for which physician information may be subsequently used, accessed or disclosed, should be precisely specified at or before the collection. There should be a reasonable expectation that the information will achieve the stated purpose(s). The policy does not prevent the use of information for purposes that were not intended and not reasonably anticipated if principles 3 and 4 of this policy are met. Consent: As a rule, information should be collected directly from the physician. Subject to principle 4, consent should be sought from the physician for the collection, use, access or disclosure of physician information. The physician should be informed about all intended and anticipated uses, accesses or disclosures of the information. Conditions for collection, use, access and disclosure: The information should: be limited to the minimum necessary to carry out the stated purpose(s), be in the least intrusive format required for the stated purpose(s), and its collection, use, access and disclosure should not infringe on the physician’s duty of confidentiality with respect to that information. Use of information without consent: There may be justification for the collection, use, access or disclosure of physician information without the physician’s consent if, in addition to the conditions in principle 3 being met, the custodian publicly demonstrates with respect to the purpose(s), generically construed, that: the stated purpose(s) could not be met or would be seriously compromised if consent were required, the stated purpose(s) is(are) of sufficient importance that the public interest outweighs to a substantial degree the physician’s right to privacy and right of consent in a free and democratic society, and that the collection, use, access or disclosure of physician information with respect to the stated purpose(s) always ensures justice and fairness to the physician by being consistent with principle 6 of this policy. Physician’s access to his or her own information: Physicians have a right to view and ensure, in a timely manner, the accuracy of the information collected about them. This principle does not apply if there is reason to believe that the disclosure to the physician will cause substantial adverse effect to others. The onus is on the custodian to justify a denial of access. 6. Information quality and interpretation: Custodians must take reasonable steps to ensure that the information they collect, use, gain access to or disclose is accurate, complete and correct. Custodians must use valid and reliable collection methods and, as appropriate, involve physicians to interpret the information; these physicians must have practice characteristics and credentials similar to those of the physician whose information is being interpreted. 7. Security: Physical and human safeguards must exist to ensure the integrity and reliability of physician information and to protect against unauthorized collection, use, access or disclosure of physician information. 8. Retention and destruction: Physician information should be retained only for the length of time necessary to fulfill the specified purpose(s), after which time it should be destroyed. 9. Inquiries and complaints: Custodians must have in place a process whereby inquiries and complaints can be received, processed and adjudicated in a fair and timely way. The complaint process, including how to initiate a complaint, must be made known to physicians. 10. Openness and transparency: Custodians must have transparent and explicit record-keeping or database management policies, practices and systems that are open to public scrutiny, including the purpose(s) for the collection, use, access and disclosure of physician information. The existence of any physician information record-keeping systems or database systems must be made known and available upon request to physicians. 11. Accountability: Custodians of physician information must ensure that they have proper authority and mandate to collect, use, gain access to or disclose physician information. Custodians must have policies and procedures in place that give effect to the principles in this document. Custodians must have a designated person who is responsible for monitoring practices and ensuring compliance with the policies and procedures. (1) Canadian Medical Association. Health Information Privacy Code. CMAJ 1998;159(8):997-1016.
Documents
Less detail

Guiding Principles for Physician Electronic Medical Records (EMR) Adoption in Ambulatory Clinical Practice

https://policybase.cma.ca/en/permalink/policy9117
Last Reviewed
2019-03-03
Date
2008-02-23
Topics
Health information and e-health
  1 document  
Policy Type
Policy document
Last Reviewed
2019-03-03
Date
2008-02-23
Topics
Health information and e-health
Text
GUIDING PRINCIPLES FOR PHYSICIAN ELECTRONIC MEDICAL RECORDS (EMR) ADOPTION IN AMBULATORY CLINICAL PRACTICE The following principles outline what is important to physicians and why as they make the decision to adopt electronic medical record systems (EMRs) in ambulatory clinical practice. Physician adoption of the EMR has the potential to transform patient care and the quality of health statistics and health research in Canada, as long as the right conditions are met and the guiding principles outlined here are adhered to. Adoption of EMRs in clinical ambulatory practices will lead to significant improvements in data comprehensiveness, clinical relevance and quality — and this, in turn, will lead to improved clinical decision support, core data sets and health statistics that meet the primary goal of enhancing health care delivery, treatment and outcomes. PRINCIPLES General Policy
Privacy. A physician’s ethical and legal responsibility as data steward of the patient’s medical information must be protected and enhanced.1
Choice. There must be appropriate independence of choice that respects physicians’ professional and business autonomy. Physicians must be free to choose the EMR product that best meets the needs of their practice model, type and size.
Voluntary. Physician adoption of EMRs must be voluntary, not mandated or coerced.
Non-discriminatory. Programs designed to offset physicians’ costs or encourage them to adopt EMRs must be non-discriminatory (i.e., not tied to a single EMR product or health care practice model). While such restrictions may be attractive to some payors and administrators, they discriminate against physicians who do not meet their criteria and risk creating two “classes” of physicians and patients.
Outcome-related incentives. Incentives for EMR adoption should be tied to clinical benefits and outcomes, not driven by cost containment. Financial incentives or bonuses that are tied to clinical outcomes may encourage EMR utilization and optimize the use of these systems in ambulatory clinical practices. 1 For more detail on the physician’s ethical responsibilities as data steward of patient information please refer to the CMA Code of Ethics and Professionalism, Guiding Principles for the Optimal Use of Data Analytics by Physicians at the Point of Care, and Guiding Principles for Physicians Recommending Mobile Health Applications to Patients. Page 2 Financial
Unrestricted. Funding for EMRs in physician offices must be equally available to all physicians, and not restricted to a single EMR product or physician practice model.
Funding. Cost analyses have determined that the majority of the benefits from EMRs accrue to the health care system (i.e., payors and patients) and not to individual physicians. It is only reasonable that those who benefit most should assume the costs.
Comprehensive. The cost of implementing an EMR system goes beyond acquisition of hardware and software. Funding for physician adoption of EMRs must be comprehensive and include costs associated with the initial purchase, as well as implementation, change management, ongoing operation, and evergreening of the system.
Save harmless. Early adoptors who need to update or replace their existing systems, as well as physicians whose EMR vendor goes out of business, must not be disadvantaged. These physicians must not be penalized or excluded from funding programs, and should be provided with the necessary transition support. Business
Vendor sustainability. Vendor stability is critical to EMR adoption by physicians. This can be achieved through vendor compliance with technical and business requirements that address fiscal sustainability as well as EMR product quality, technical standards and capabilities.
Due diligence. Because physician practices vary in type, size and needs, there is no “one-size-fits-all” EMR solution. Physicians must assess the needs of their individual practice to determine the best product.
Workflow re-engineering. Implementation of EMRs in ambulatory clinical practice may require workflow adjustment or re-engineering. Assessments of workflow and practice needs must be part of EMR change management programs.
HR impact. Adoption of EMRs in ambulatory clinical practices will have an impact on human resources. Provision should be made for physician and office staff retraining, retention and turnover.
Support and service agreements. Physician use of EMRs in ambulatory clinical practice requires appropriate support and service agreements not only to provide the necessary infrastructure and connectivity, but also to guarantee ongoing, accessible and reliable technical support. Physicians must be able to access patient records in their EMR system at all times, regardless of where the records are physically stored (e.g., off-site with an alternate service provider, or onsite in a local client server).
Risk management strategies (liability and insurance) tied to EMR adoption must address the privacy, security, business continuity and professional liability requirements of physician practice in an electronic environment. Change management and transition
Critical to success. To fully realize the benefits from EMR adoption, the move from paper to electronic records requires change management support and services geared specifically to physician EMR adoption.
Ongoing. Change management is a key success factor in driving both uptake and optimal utilization of EMRs in ambulatory clinical practice. To realize the full benefits of EMR adoption on health care outcomes, physician change management programs must be ongoing, not one-time. Page 3
Comprehensive. Comprehensive change management for physicians who adopt EMRs must include the tools and services to assist with system needs assessment, EMR selection, implementation, workflow adjustment, and training for physicians and staff, as well as suggestions to maximize use of the EMR.
Physician driven and designed. Change management must meet the real and individual needs of physicians as they move to an EMR-based practice. This requires flexibility (not one-size-fits-all), “just in time” capacity and delivery, and a mechanism for evaluating the program.
Payor funded and delivered. Delivery and costs of these programs should be borne by payors as part of any physician EMR funding programs or agreements. Usability and human factors
User interface and usability. User interface and usability of EMR systems are critical success factors for physician acceptance and optimal utilization of EMRs in clinical practice.
Workflow. EMR adoption requires changes to physician workflow, such as history-taking and charting. Done properly, workflow changes related to EMRs should result in administrative efficiencies and improved clinical outcomes.
Core principles of practice must be respected. The EMR must allow the physician to practice comprehensive care, efficiently manage patients with multiple problems and respect the doctor-patient relationship where the patient’s values, wishes, advance directives and physical and social function are integral to medical care.
Training and education. Training in the use, benefits, shortcomings and opportunities of an EMR must become part of the medical education curricula in all stages of physician practice: undergraduate, postgraduate and continuing medical education.
Standardized data. Large data sets that record every observation are unworkable in practice. The EMR must allow the physician to record and access data in a standardized way.
Data quality. Data quality is critical to patient care. Physicians require access to accurate, clinically relevant data. Inaccurately recorded and unfiltered data does not benefit patient care. Clinical patient care
Management of patient records. EMR systems allow physicians to quickly access and manage patient data in an organized fashion (e.g., search, sort and retrieve data, spot trends, or flag charts). This leads to more efficient practices and enhances care delivery.
Referrals and patient summaries. The ability to transmit referral requests and reports electronically using an EMR greatly facilitates the consultation process. Core clinical data sets generated from the EMR can be used to share or hand off patient care among providers, facilitating both continuity of care and emergency access to relevant data.
Drugs and lab reports. Physician use of an EMR permits drug and lab data to be recorded and shared more accurately and efficiently. Benefits to patient care include automated prescription renewals, quick identification of patients affected by drug alerts, and collation of lab data to show trends.
Decision support. EMR adoption in ambulatory clinical practice makes clinical decision support (i.e., access to timely, appropriate, evidence-based information) possible at the point of care. This has the potential to enhance patient safety, care delivery and health outcomes. Page 4
Patient values and autonomy. Patient values and autonomy cannot become secondary to the "data management" requirements of the EMR. An EMR must provide the same (or better) standards of patient confidentiality as traditional paper-based records.
Accessibility. Patient data must always be collected and stored in an EMR with the primary goal of improving individual patient care. Data accessibility for clinical care is more important than compiling a large common data set. Health Research
Standardized data. Primary care is driven by symptoms, not diagnoses, and both must be recorded in the EMR in a standardized way.
Clinical coding. Primary care disorders are low-prevalence and will require a high degree of precision when data are coded.
Evidence-based care models. The episode-of-care data model demonstrates how symptoms and symptom clusters evolve over time. It is possible to derive the sensitivity and specificity of symptoms and symptom clusters to improve pre-test likelihood and avoid unproductive testing.
Core and aggregate data. Standardized data means that core data sets can be combined, and their aggregation allows identification and analysis of rarer conditions.
Documents
Less detail

Integration of clinical practice guidelines with electronic medical records

https://policybase.cma.ca/en/permalink/policy10458
Last Reviewed
2019-03-03
Date
2012-08-15
Topics
Health care and patient safety
Health information and e-health
Resolution
GC12-22
The Canadian Medical Association supports the integration of clinical practice guidelines with electronic medical records.
Policy Type
Policy resolution
Last Reviewed
2019-03-03
Date
2012-08-15
Topics
Health care and patient safety
Health information and e-health
Resolution
GC12-22
The Canadian Medical Association supports the integration of clinical practice guidelines with electronic medical records.
Text
The Canadian Medical Association supports the integration of clinical practice guidelines with electronic medical records.
Less detail

Vision for e-Prescribing: a joint statement by the Canadian Medical Association and the Canadian Pharmacists Association

https://policybase.cma.ca/en/permalink/policy10670
Last Reviewed
2019-03-03
Date
2012-12-08
Topics
Health information and e-health
Pharmaceuticals/ prescribing/ cannabis/ marijuana/ drugs
  1 document  
Policy Type
Policy document
Last Reviewed
2019-03-03
Date
2012-12-08
Topics
Health information and e-health
Pharmaceuticals/ prescribing/ cannabis/ marijuana/ drugs
Text
Vision for e-Prescribing: a joint statement by the Canadian Medical Association and the Canadian Pharmacists Association By 2015, e-prescribing will be the means by which prescriptions are generated for Canadians. Definition e-Prescribing is the secure electronic creation and transmission of a prescription between an authorized prescriber and a patient's pharmacy of choice, using clinical Electronic Medical Record (EMR) and pharmacy management software. Background Health Information Technology (HIT) is an enabler to support clinicians in the delivery of health care services to patients. The Canadian Medical Association (CMA) and the Canadian Pharmacists Association (CPhA) each have identified e-prescribing as a key tool to deliver better value to patients. The integration of HIT into clinics and health care facilities where physicians and pharmacists provide care is a priority for both associations1. As part of its Health Care Transformation initiative, the CMA highlighted the need to accelerate the introduction of e-prescribing in Canada to make it the main method of prescribing. In its policy on optimal prescribing the CMA noted that one of the key elements was the introduction of electronic prescribing. The CPhA, as part of its Blueprint for Pharmacy Implementation Plan, highlights information and communication technology, which includes e-prescribing, as one of five priority areas. We applaud the ongoing efforts of Canada Health Infoway, provinces and territories to establish Drug Information Systems (DIS) and the supporting infrastructure to enable e-prescribing. We urge governments to maintain e-prescribing as a priority and take additional measures to accelerate their investments in this area. It is our joint position that e-prescribing will improve patient care and safety. e-Prescribing, when integrated with DIS, supports enhanced clinical decision-making, prescribing and medication management, and integrates additional information available at the point of care into the clinical workflow. Principles The following principles should guide our collective efforts to build e-prescribing capability in all jurisdictions: * Patient confidentiality and security must be maintained * Patient choice must be protected * Clinicians must have access to best practice information and drug cost and formulary data * Work processes must be streamlined and e-prescribing systems must be able to integrate with clinical and practice management software and DIS * Guidelines must be in place for data sharing among health professionals and for any other use or disclosure of data * The authenticity and accuracy of the prescription must be verifiable * The process must prevent prescription forgeries and diversion * Pan-Canadian standards must be set for electronic signatures Benefits of e-Prescribing A number of these benefits will be realized when e-prescribing is integrated with jurisdictional Drug Information Systems (DIS). * Patients: o Improves patient safety and overall quality of care o Increases convenience for dispensing of new and refill prescriptions o Supports collaborative, team-based care * Providers: o Supports a safer and more efficient method of prescribing and authorizing refills by replacing outdated phone, fax and paper-based prescriptions o Eliminates re-transcription and decreases risk of errors and liability, as a prescription is written only once at the point-of-care o Supports electronic communications between providers and reduces phone calls and call-backs to/from pharmacies for clarification o Provides Warning and Alert systems at the point of prescribing, supporting clinician response to potential contraindications, drug interactions and allergies o Facilitates informed decision-making by making medication history, drug, therapeutic, formulary and cost information available at the point of prescribing * Health Care System: o Improves efficiency and safety of prescribing, dispensing and monitoring of medication therapy o Supports access to a common, comprehensive medication profile, enhancing clinical decision-making and patient adherence o Increases cost-effective medication use, through improved evidence-based prescribing, formulary adherence, awareness of drug costs and medication management o Improves reporting and drug use evaluation Challenges While evidence of the value of e-prescribing is established in the literature, its existence has not fostered broad implementation and adoption. In Canada, there are a number of common and inter-related challenges to e-prescribing's implementation and adoption. These include: * Improving access to relevant and complete information to support decision-making * Increasing the level of the adoption of technology at the point of care * Focusing on systems-based planning to ensure continuum-wide value * Integrating e-prescribing into work processes to gain support from physicians, pharmacists and other prescribers * Increasing leadership commitment to communicate the need for change, remove barriers and ensure progress * Updating legislation and regulation to support e-prescribing Enabling e-Prescribing in Canada CMA and CPhA believe that we can achieve the vision that is set out in this document and address the aforementioned challenges by working collectively on five fronts: * Health care leadership in all jurisdictions and clinical organizations must commit to make e-prescribing a reality by 2015 * Provinces and territories, with Canada Health Infoway, must complete the building blocks to support e-prescribing by increasing Electronic Medical Record (EMR) adoption at the point of care, finishing the work on the Drug Information Systems (DIS) in all jurisdictions and building the connectivity among the points of care and the DIS systems * Pharmacist and medical organizations in conjunction with provinces, territories and Canada Health Infoway must identify clear benefits for clinicians (enhancing the effectiveness of care delivery and in efficiencies in changing workflows) to adopt e-prescribing and focus their efforts on achieving these benefits in the next three years * Provinces, territories and regulatory organizations must create a policy/regulatory environment that supports e-prescribing which facilitates the role of clinicians in providing health care to their patients * Provinces and territories must harmonize the business rules and e-health standards to simplify implementation and conformance by software vendors and allow more investment in innovation. 1 Health Care Transformation in Canada, Canadian Medical Association, June 2010; Blueprint for Pharmacy Implementation Plan, Canadian Pharmacists Association, September 2009
Documents
Less detail

Best practices for smartphone and smart-device clinical photo taking and sharing

https://policybase.cma.ca/en/permalink/policy13860
Date
2018-03-03
Topics
Health information and e-health
Ethics and medical professionalism
  1 document  
Policy Type
Policy document
Date
2018-03-03
Topics
Health information and e-health
Ethics and medical professionalism
Text
Clinical photography is a valuable tool for physicians. Smartphones, as well as other devices supporting network connectivity, offer a convenient, efficient method to take and share images. However, due to the private nature of the information contained in clinical photographs there are concerns as to the appropriate storage, dissemination, and documentation of clinical images. Confidentiality of image data must be considered and the dissemination of these images onto servers must respect the privacy and rights of the patient. Importantly, patient information should be considered as any information deriving from a patient, and the concepts outlined therefore apply to any media that can be collected on, or transmitted with, a smart-device. Clinical photography can aid in documenting form and function, in tracking conditions and wound healing, in planning surgical operations, and in clinical decision-making. Additionally, clinical photographs can provide physicians with a valuable tool for patient communication and education. Due to the convenience of this type of technology it is not appropriate to expect physicians to forego their use in providing their patients with the best care available. The technology and software required for secure transfer, communication, and storage of clinical media is presently available, but many devices have non-secure storage/dissemination options enabled and lack user-control for permanently deleting digital files. In addition, data uploaded onto server systems commonly cross legal jurisdictions. Many physicians are not comfortable with the practice, citing security, privacy, and confidentiality concerns as well as uncertainty in regards to regional regulations governing this practice.1 Due to concern for patient privacy and confidentiality it is therefore incredibly important to limit the unsecure or undocumented acquisition or dissemination of clinical photographs. To assess the current state of this topic, Heyns et al. have reviewed the accessibility and completeness of provincial and territorial medical regulatory college guidelines.2 Categories identified as vital and explored in this review included: Consent; Storage; Retention; Audit; Transmission; and Breach. While each regulatory body has addressed limited aspects of the overall issue, the authors found a general lack of available information and call for a unified document outlining pertinent instructions for conducting clinical photography using a smartphone and the electronic transmission of patient information.2 The discussion of this topic will need to be ongoing and it is important that physicians are aware of applicable regulations, both at the federal and provincial levels, and how these regulations may impact the use of personal devices. The best practices supported here aim to provide physicians and healthcare providers with an understanding of the scope and gravity of the current environment, as well as the information needed to ensure patient privacy and confidentiality is assessed and protected while physicians utilize accessible clinical photography to advance patient care. Importantly, this document only focusses on medical use (clinical, academic, and educational) of clinical photography and, while discussing many core concepts of patient privacy and confidentiality of information, should not be perceived as a complete or binding framework. Additionally, it is recommended that physicians understand the core competencies of clinical photography, which are not described here. The Canadian Medical Association (CMA) suggests that the following recommendations be implemented, as thoroughly as possible, to best align with the CMA policy on the Principles for the Protection of Patient Privacy (CMA Policy PD2018-02). These key recommendations represent a non-exhaustive set of best practices - physicians should seek additional information as needed to gain a thorough understanding and to stay current in this rapidly changing field. KEY RECOMMENDATIONS 1. CONSENT * Informed consent must be obtained, preferably prior, to photography with a mobile device. This applies for each and any such encounter and the purpose made clear (i.e. clinical, research, education, publication, etc.). Patients should also be made aware that they may request a copy of a picture or for a picture to be deleted. * A patient's consent to use electronic transmission does not relieve a physician of their duty to protect the confidentiality of patient information. Also, a patient's consent cannot override other jurisdictionally mandated security requirements. * All patient consents (including verbal) should be documented. The acquisition and recording of patient consent for medical photography/dissemination may be held to a high standard of accountability due to the patient privacy and confidentiality issues inherent in the use of this technology. Written and signed consent is encouraged. * Consent should be considered as necessary for any and all photography involving a patient, whether or not that patient can be directly recognized, due to the possibility of linked information and the potential for breach of privacy. The definition of non-identifiable photos must be carefully considered. Current technologies such as face recognition and pattern matching (e.g. skin markers, physical structure, etc.), especially in combination with identifying information, have the potential to create a privacy breach. * Unsecure text and email messaging requires explicit patient consent and should not be used unless the current gold standards of security are not accessible. For a patient-initiated unsecure transmission, consent should be clarified and not assumed. 2. TRANSMISSION * Transmission of photos and patient information should be encrypted as per current-day gold standards (presently, end-to-end encryption (E2EE)) and use only secure servers that are subject to Canadian laws. Explicit, informed consent is required otherwise due to privacy concerns or standards for servers in other jurisdictions. Generally, free internet-based communication services and public internet access are unsecure technologies and often operate on servers outside of Canadian jurisdiction. * Efforts should be made to use the most secure transmission method possible. For data security purposes, identifying information should never be included in the image, any frame of a video, the file name, or linked messages. * The sender should always ensure that each recipient is intended and appropriate and, if possible, receipt of transmission should be confirmed by the recipient. 3. STORAGE * Storing images and data on a smart-device should be limited as much as possible for data protection purposes. * Clinical photos, as well as messages or other patient-related information, should be completely segregated from the device's personal storage. This can be accomplished by using an app that creates a secure, password-protected folder on the device. * All information stored (on internal memory or cloud) must be strongly encrypted and password protected. The security measures must be more substantial than the general password unlock feature on mobile devices. * Efforts should be made to dissociate identifying information from images when images are exported from a secure server. Media should not be uploaded to platforms without an option for securely deleting information without consent from the patient, and only if there are no better options. Automatic back-up of photos to unsecure cloud servers should be deactivated. Further, other back-up or syncing options that could lead to unsecure server involvement should be ascertained and the risks mitigated. 4. Cloud storage should be on a Canadian and SOCII certified server. Explicit, informed consent is required otherwise due to privacy concerns for servers in other jurisdictions. 5. AUDIT & RETENTION * It is important to create an audit trail for the purposes of transparency and medical best practice. Key information includes patient and health information, consent type and details, pertinent information regarding the photography (date, circumstance, photographer), and any other important facts such as access granted/deletion requests. * Access to the stored information must be by the authorized physician or health care provider and for the intended purpose, as per the consent given. Records should be stored such that it is possible to print/transfer as necessary. * Original photos should be retained and not overwritten. * All photos and associated messages may be considered part of the patient's clinical records and should be maintained for at least 10 years or 10 years after the age of majority, whichever is longer. When possible, patient information (including photos and message histories between health professionals) should be retained and amalgamated with a patient's medical record. Provincial regulations regarding retention of clinical records may vary and other regulations may apply to other entities - e.g. 90 years from date of birth applies to records at the federal level. * It may not be allowable to erase a picture if it is integral to a clinical decision or provincial, federal, or other applicable regulations require their retention. 6. BREACH * Any breach should be taken seriously and should be reviewed. All reasonable efforts must be made to prevent a breach before one occurs. A breach occurs when personal information, communication, or photos of patients are stolen, lost, or mistakenly disclosed. This includes loss or theft of one's mobile device, texting to the wrong number or emailing/messaging to the wrong person(s), or accidentally showing a clinical photo that exists in the phone's personal photo album. * It should be noted that non-identifying information, when combined with other available information (e.g. a text message with identifiers or another image with identifiers), can lead to highly accurate re-identification. * At present, apps downloaded to a smart-device for personal use may be capable of collecting and sharing information - the rapidly changing nature of this technology and the inherent privacy concerns requires regular attention. Use of specialized apps designed for health-information sharing that help safeguard patient information in this context is worth careful consideration. * Having remote wipe (i.e. device reformatting) capabilities is an asset and can help contain a breach. However, inappropriate access may take place before reformatting occurs. * If a smartphone is strongly encrypted and has no clinical photos stored locally then its loss may not be considered a breach. * In the event of a breach any patient potentially involved must be notified as soon as possible. The CMPA, the organization/hospital, and the Provincial licensing College should also be contacted immediately. Provincial regulations regarding notification of breach may vary. Approved by the CMA Board of Directors March 2018 References i Heyns M†, Steve A‡, Dumestre DO‡, Fraulin FO‡, Yeung JK‡ † University of Calgary, Canada ‡ Section of Plastic Surgery, Department of Surgery, University of Calgary, Canada 1 Chan N, Charette J, Dumestre DO, Fraulin FO. Should 'smart phones' be used for patient photography? Plast Surg (Oakv). 2016;24(1):32-4. 2 Unpublished - Heyns M, Steve A, Dumestre DO, Fraulin FO, Yeung J. Canadian Guidelines on Smartphone Clinical Photography.
Documents
Less detail

Innovative health system pilot projects in Canada

https://policybase.cma.ca/en/permalink/policy13721
Date
2017-08-23
Topics
Health systems, system funding and performance
Health information and e-health
Resolution
GC17-23
The Canadian Medical Association will support new projects and mechanisms to facilitate the expansion and increase the scale of innovative health system pilot projects in Canada.
Policy Type
Policy resolution
Date
2017-08-23
Topics
Health systems, system funding and performance
Health information and e-health
Resolution
GC17-23
The Canadian Medical Association will support new projects and mechanisms to facilitate the expansion and increase the scale of innovative health system pilot projects in Canada.
Text
The Canadian Medical Association will support new projects and mechanisms to facilitate the expansion and increase the scale of innovative health system pilot projects in Canada.
Less detail

Automated medical information systems

https://policybase.cma.ca/en/permalink/policy701
Last Reviewed
2017-03-04
Date
1976-06-25
Topics
Health information and e-health
Resolution
GC76-39
The Canadian Medical Association encourages the development of field projects for automated medical information systems for practising physicians
Policy Type
Policy resolution
Last Reviewed
2017-03-04
Date
1976-06-25
Topics
Health information and e-health
Resolution
GC76-39
The Canadian Medical Association encourages the development of field projects for automated medical information systems for practising physicians
Text
The Canadian Medical Association encourages the development of field projects for automated medical information systems for practising physicians
Less detail

National health care database

https://policybase.cma.ca/en/permalink/policy714
Last Reviewed
2017-03-04
Date
1985-08-25
Topics
Health information and e-health
Resolution
GC85-45
The Canadian Medical Association recommends the development of a sound national health care database, accessible to health care professionals' associations and legitimate researchers.
Policy Type
Policy resolution
Last Reviewed
2017-03-04
Date
1985-08-25
Topics
Health information and e-health
Resolution
GC85-45
The Canadian Medical Association recommends the development of a sound national health care database, accessible to health care professionals' associations and legitimate researchers.
Text
The Canadian Medical Association recommends the development of a sound national health care database, accessible to health care professionals' associations and legitimate researchers.
Less detail

Compensation for remote consultation

https://policybase.cma.ca/en/permalink/policy1505
Last Reviewed
2017-03-04
Date
2004-08-18
Topics
Health human resources
Health information and e-health
Physician practice/ compensation/ forms
Resolution
GC04-41
The Canadian Medical Association recommends that provincial and territorial authorities recognize that any type of remote consultation such as telemedicine and teleconsultation is a medical act to be duly compensated.
Policy Type
Policy resolution
Last Reviewed
2017-03-04
Date
2004-08-18
Topics
Health human resources
Health information and e-health
Physician practice/ compensation/ forms
Resolution
GC04-41
The Canadian Medical Association recommends that provincial and territorial authorities recognize that any type of remote consultation such as telemedicine and teleconsultation is a medical act to be duly compensated.
Text
The Canadian Medical Association recommends that provincial and territorial authorities recognize that any type of remote consultation such as telemedicine and teleconsultation is a medical act to be duly compensated.
Less detail

Online continuing medical education

https://policybase.cma.ca/en/permalink/policy9892
Last Reviewed
2017-03-04
Date
2010-08-25
Topics
Population health/ health equity/ public health
Ethics and medical professionalism
Health information and e-health
Resolution
GC10-69
The Canadian Medical Association, in collaboration with provincial/territorial medical associations, calls on governments to ensure that the necessary technology is in place to guarantee that physicians in rural and remote locations have access to accredited online continuing medical education/continuing professional development.
Policy Type
Policy resolution
Last Reviewed
2017-03-04
Date
2010-08-25
Topics
Population health/ health equity/ public health
Ethics and medical professionalism
Health information and e-health
Resolution
GC10-69
The Canadian Medical Association, in collaboration with provincial/territorial medical associations, calls on governments to ensure that the necessary technology is in place to guarantee that physicians in rural and remote locations have access to accredited online continuing medical education/continuing professional development.
Text
The Canadian Medical Association, in collaboration with provincial/territorial medical associations, calls on governments to ensure that the necessary technology is in place to guarantee that physicians in rural and remote locations have access to accredited online continuing medical education/continuing professional development.
Less detail

E-health strategies

https://policybase.cma.ca/en/permalink/policy9908
Last Reviewed
2017-03-04
Date
2010-08-25
Topics
Health information and e-health
Health systems, system funding and performance
Resolution
GC10-90
The Canadian Medical Association will work with provincial/territorial medical associations to ensure investments made by the Canada Health Infoway are aligned with, and respect e-health strategies that are currently being implemented or developed within various jurisdictions.
Policy Type
Policy resolution
Last Reviewed
2017-03-04
Date
2010-08-25
Topics
Health information and e-health
Health systems, system funding and performance
Resolution
GC10-90
The Canadian Medical Association will work with provincial/territorial medical associations to ensure investments made by the Canada Health Infoway are aligned with, and respect e-health strategies that are currently being implemented or developed within various jurisdictions.
Text
The Canadian Medical Association will work with provincial/territorial medical associations to ensure investments made by the Canada Health Infoway are aligned with, and respect e-health strategies that are currently being implemented or developed within various jurisdictions.
Less detail
Last Reviewed
2017-03-04
Date
2010-08-25
Topics
Health information and e-health
Population health/ health equity/ public health
Physician practice/ compensation/ forms
Resolution
GC10-93
The Canadian Medical Association supports and will expedite research into the expansion of telemedicine and the utilization of emerging technologies, to directly link health care providers and patients.
Policy Type
Policy resolution
Last Reviewed
2017-03-04
Date
2010-08-25
Topics
Health information and e-health
Population health/ health equity/ public health
Physician practice/ compensation/ forms
Resolution
GC10-93
The Canadian Medical Association supports and will expedite research into the expansion of telemedicine and the utilization of emerging technologies, to directly link health care providers and patients.
Text
The Canadian Medical Association supports and will expedite research into the expansion of telemedicine and the utilization of emerging technologies, to directly link health care providers and patients.
Less detail

Medical records

https://policybase.cma.ca/en/permalink/policy9923
Last Reviewed
2017-03-04
Date
2010-08-25
Topics
Ethics and medical professionalism
Health care and patient safety
Health information and e-health
Resolution
GC10-106
The Canadian Medical Association will work with provincial/territorial medical associations and other stakeholders including patients to develop a national strategy for the long-term retention, retrieval and disposal of medical records.
Policy Type
Policy resolution
Last Reviewed
2017-03-04
Date
2010-08-25
Topics
Ethics and medical professionalism
Health care and patient safety
Health information and e-health
Resolution
GC10-106
The Canadian Medical Association will work with provincial/territorial medical associations and other stakeholders including patients to develop a national strategy for the long-term retention, retrieval and disposal of medical records.
Text
The Canadian Medical Association will work with provincial/territorial medical associations and other stakeholders including patients to develop a national strategy for the long-term retention, retrieval and disposal of medical records.
Less detail

Patients access to their electronic medical record

https://policybase.cma.ca/en/permalink/policy11924
Date
2016-08-24
Topics
Health information and e-health
Resolution
GC16-49
The Canadian Medical Association recommends that patients be able to access their electronic medical record and contribute information to it.
Policy Type
Policy resolution
Date
2016-08-24
Topics
Health information and e-health
Resolution
GC16-49
The Canadian Medical Association recommends that patients be able to access their electronic medical record and contribute information to it.
Text
The Canadian Medical Association recommends that patients be able to access their electronic medical record and contribute information to it.
Less detail

Funding criteria for any new electronic medical record initiative

https://policybase.cma.ca/en/permalink/policy11925
Date
2016-08-24
Topics
Health systems, system funding and performance
Health information and e-health
Resolution
GC16-50
The Canadian Medical Association recommends that funding criteria for any new electronic medical record initiative include the ability for patients to access and contribute to their record.
Policy Type
Policy resolution
Date
2016-08-24
Topics
Health systems, system funding and performance
Health information and e-health
Resolution
GC16-50
The Canadian Medical Association recommends that funding criteria for any new electronic medical record initiative include the ability for patients to access and contribute to their record.
Text
The Canadian Medical Association recommends that funding criteria for any new electronic medical record initiative include the ability for patients to access and contribute to their record.
Less detail

Patient bill of health information rights

https://policybase.cma.ca/en/permalink/policy9498
Last Reviewed
2016-05-20
Date
2009-08-19
Topics
Health care and patient safety
Health information and e-health
Ethics and medical professionalism
Resolution
GC09-17
The Canadian Medical Association and provincial/territorial medical associations call on governments to engage patients and the public in the development of a patient bill of health information rights that sets out a vision for the governance of patient health information.
Policy Type
Policy resolution
Last Reviewed
2016-05-20
Date
2009-08-19
Topics
Health care and patient safety
Health information and e-health
Ethics and medical professionalism
Resolution
GC09-17
The Canadian Medical Association and provincial/territorial medical associations call on governments to engage patients and the public in the development of a patient bill of health information rights that sets out a vision for the governance of patient health information.
Text
The Canadian Medical Association and provincial/territorial medical associations call on governments to engage patients and the public in the development of a patient bill of health information rights that sets out a vision for the governance of patient health information.
Less detail

34 records – page 1 of 2.